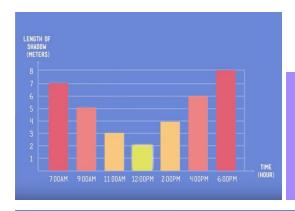
Earth's Rotation & Revolution: 8.1

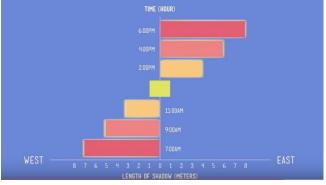
Where does the sun go when we can't see it? ones moving.	! We actually are the
Earth spins on its, which is an imaginal rotates. When the Earth spins around on its axis	
Earth's rotation is what give us day and night, exside of Earth is facing the sun it isv	
**This changes because	·
At the same time that the Earth is rotating (causi	· · · · · · · · · · · · · · · · · · ·
This takes which equals one	
Because the Earth is tilted, one part of Earth is This means that differer	
different amounts of and	·
This creates a pattern. When <u>you</u> are on the par sun, it is This means the S, because they are oppos	outhern Hemisphere is experiencing
If neither hemisphere is facing the sun it is either	or
If the Earth wasn't tilted, we would have	all vear long.

Following the Sun: 8.2

Why do shadows move over time?


What is a shadow? It is the _______ that is created by your body blocking the sun. Your shadow is always ______ the direction the sun is to you (or another object).

Even for objects that don't move like _____ or buildings, their shadows will move because the _____.


How did people in ancient civilizations use the sun to tell time? They knew that the sun followed a specific _____ each day. It always was rising in the _____ and setting in the _____.

Because the sun followed a pattern during the day, so did ______.

In the morning, shadows point to the west. They start out _____ then get _____ as we go toward noon. At _____ there is hardly any shadow. After noon the shadows start to get _____ again, but point to the east.

GRAPH 1: WHEN THE SUN IS
LOW IN THE SKY, SHADOWS
ARE LONG. WHEN IT'S HIGH IN
THE SKY, SHADOWS ARE SHORT.

GRAPH 2: WHATEVER DIRECTION
THE SUN IS IN THE SKY, THE
SHADOWS IT CREATES WILL POINT
IN THE OPPOSITE DIRECTION.